Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T cell activation via IL-15-dependent DC crosstalk.
نویسندگان
چکیده
Most vaccines depend on coadministration of Ags and adjuvants that activate APCs. Nanoparticles (NPs) have emerged as an attractive vehicle for synchronized delivery of Ags and adjuvants to APCs and can be targeted to specific cell types, such as dendritic cells (DCs), which are potent APCs. Which subset of human DCs should be targeted for optimal activation of T cell immunity, however, remains unknown. In this article, we describe a poly-lactic-coglycolic acid-based NP platform, wherein avidin-decorated NPs can be targeted to multiple human DC subsets via biotinylated Abs. Both BDCA3(+) and monocyte-derived DC-SIGN(+) NP-loaded DCs were equally effective at generating Ag-specific human T cells in culture, including against complex peptide mixtures from viral and tumor Ags across multiple MHC molecules. Ab-mediated targeting of NPs to distinct DC subsets led to enhanced T cell immunity. However, combination targeting to both DC-SIGN and BDCA3(+) DCs led to significantly greater activation of T cells compared with targeting either DC subset alone. Enhanced T cell activation following combination targeting depended on DC-mediated cytokine release and was IL-15 dependent. These data demonstrate that simultaneous targeting of multiple DC subsets may improve NP vaccines by engaging DC crosstalk and provides a novel approach to improving vaccines against pathogens and tumors.
منابع مشابه
Human Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملIL-18-based combinatorial adjuvants promote the NK-DC-mediated production of the CCR7 ligand CCL19 in lymph nodes from cancer patients
Effective accumulation and interaction of mature dendritic cells (DCs) and naïve T cells within lymph nodes (LNs), driven by the CCR7-CCL19/CCL21 axis, are critical for the induction of adaptive T cell immunity. Human natural killer (NK) cells activated by IL-18 exhibit unique ‘helper’ activity in promoting productive DC-T cell interactions, inducing dendritic cell (DC) maturation and the type-...
متن کاملInfection of myeloid dendritic cells with Listeria monocytogenes leads to the suppression of T cell function by multiple inhibitory mechanisms.
Myeloid dendritic cells (DC) and macrophages play an important role in pathogen sensing and antimicrobial defense. In this study we provide evidence that myeloid DC respond to infection with Listeria monocytogenes with simultaneous induction of multiple stimulatory and inhibitory molecules. However, the overall impact of infected DC during T cell encounter results in suppression of T cell activ...
متن کاملCross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR.
We evaluated human CD8(+) T-cell responses generated by targeting antigens to dendritic cells (DCs) through various lectin receptors. We found the immunoreceptor tyrosine-based inhibitory motif-containing DC immunoreceptor (DCIR) to mediate potent cross-presentation. A single exposure to a low dose of anti-DCIR-antigen conjugate initiated antigen-specific CD8(+) T-cell immunity by all human DC ...
متن کاملTranspresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity.
In cancer immunotherapy, the use of dendritic cell (DC)-based vaccination strategies can improve overall survival, but until now durable clinical responses remain scarce. To date, DC vaccines are designed primarily to induce effective T-cell responses, ignoring the antitumor activity potential of natural killer (NK) cells. Aiming to further improve current DC vaccination outcome, we engineered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 193 5 شماره
صفحات -
تاریخ انتشار 2014